Choose the correct answer of the following question:
The surface areas of two spheres are in the ratio 16 : 9. The ratio of their volumes is
(a) 64 : 27 (b) 16 : 9 (c) 4 : 3 (d) 163 : 93
Let the radius of the two spheres be $r$ and $R$.
As,
$\frac{\text { Surface area of the first sphere }}{\text { Surface area of the second sphere }}=\frac{16}{9}$
$\Rightarrow \frac{4 \pi R^{2}}{4 \pi r^{2}}=\frac{16}{9}$
$\Rightarrow\left(\frac{R}{r}\right)^{2}=\frac{16}{9}$
$\Rightarrow \frac{R}{r}=\sqrt{\frac{16}{9}}$
$\Rightarrow \frac{R}{r}=\frac{4}{3} \quad \ldots .(\mathrm{i})$
Now,
The ratio of their volumes $=\frac{\text { Volume of the first sphere }}{\text { Volume of the second sphere }}$
$=\frac{\left(\frac{4}{3} \pi R^{3}\right)}{\left(\frac{4}{3} \pi r^{3}\right)}$
$=\left(\frac{R}{r}\right)^{3}$
$=\left(\frac{4}{3}\right)^{3} \quad[\operatorname{Using}(\mathrm{i})]$
$=\frac{64}{27}$
$=64: 27$
Hence, the correct answer is option (a).