Choose the correct answer of the following question:
If the height of a vertical pole is equal to the length of its shadow on the ground, the angle of elevation of the sun is
(a) 0° (b) 30° (c) 45° (d) 60°
Let AB represents the vertical pole and BC represents the shadow on the ground and θ represents angle of elevation the sun.
In $\triangle \mathrm{ABC}$,
$\tan \theta=\frac{\mathrm{AB}}{\mathrm{BC}}$
$\Rightarrow \tan \theta=\frac{x}{x} \quad(\mathrm{As}$, the height of the pole, $\mathrm{AB}=$ the length of the shadow, $\mathrm{BC}=x)$
$\Rightarrow \tan \theta=1$
$\Rightarrow \tan \theta=\tan 45^{\circ}$
$\therefore \theta=45^{\circ}$
Hence, the correct answer is option (c).