Choose the correct answer of the following question:
The shadow of a 5-m-long stick is 2 m long. At the same time, the length of the shadow of a 12.5-m-high tree is
(a) 3 m (b) 3.5m (c) 4.5 m (d) 5 m
Let AB be a stick and BC be its shadow; and PQ be the tree and QR be its shadow.
We have,
$\mathrm{AB}=5 \mathrm{~m}, \mathrm{BC}=2 \mathrm{~m}, \mathrm{PQ}=12.5 \mathrm{~m}$
In $\Delta \mathrm{ABC}$,
$\tan \theta=\frac{\mathrm{AB}}{\mathrm{BC}}$
$\Rightarrow \tan \theta=\frac{5}{2} \quad \ldots \ldots(\mathrm{i})$
Now, in $\Delta \mathrm{PQR}$,
$\tan \theta=\frac{\mathrm{PQ}}{\mathrm{QR}}$
$\Rightarrow \frac{5}{2}=\frac{12.5}{Q R} \quad[$ Using (i) $]$
$\Rightarrow \mathrm{QR}=\frac{12.5 \times 2}{5}=\frac{25}{5}$
$\therefore \mathrm{QR}=5 \mathrm{~m}$
Hence, the correct answer is option (d).