Choose the correct answer of the following question:
If a pole $12 \mathrm{~m}$ high casts a shadow $4 \sqrt{3} \mathrm{~m}$ long on the ground, then the sun's elevation is
(a) 60° (b) 45° (c) 30° (d) 90°
Let $A B$ be the pole, $B C$ be its shadow and $\theta$ be the sun's elevation.
We have,
$\mathrm{AB}=12 \mathrm{~m}$ and $\mathrm{BC}=4 \sqrt{3} \mathrm{~m}$
In $\Delta \mathrm{ABC}$,
$\tan \theta=\frac{\mathrm{AB}}{\mathrm{BC}}$
$\Rightarrow \tan \theta=\frac{12}{4 \sqrt{3}}$
$\Rightarrow \tan \theta=\frac{3}{\sqrt{3}}$
$\Rightarrow \tan \theta=\frac{3}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$
$\Rightarrow \tan \theta=\frac{3 \sqrt{3}}{3}$
$\Rightarrow \tan \theta=\sqrt{3}$
$\Rightarrow \tan \theta=\tan 60^{\circ}$
$\therefore \theta=60^{\circ}$
Hence, the correct answer is option (a).