Choose the correct answer of the following question:

Question:

Choose the correct answer of the following question:

The radii of the circular ends of a bucket of height 40 cm are 24 cm and 15 cm. The slant height (in cm) of the bucket is

(a) 41                      (b) 43                      (c) 49                      (d) 51     

Solution:

We have,

Height of the bucket, $h=40 \mathrm{~cm}$,

Radius of the upper end, $R=24 \mathrm{~cm}$ and

Radius of the lower end, $r=15 \mathrm{~cm}$

Now,

The slant height, $l=\sqrt{(R-r)^{2}+h^{2}}$

$=\sqrt{(24-15)^{2}+40^{2}}$

$=\sqrt{9^{2}+40^{2}}$

$=\sqrt{81+1600}$

$=\sqrt{1681}$

$=41 \mathrm{~cm}$

Hence, the correct answer is option (a).

 

Leave a comment