Choose the correct alternative in the following:

Question:

Choose the correct alternative in the following:

If $f(x)=|x-3|$ and $g(x)=$ fof $(x)$, then for $x>10, g^{\prime}(x)$ is equal to

A. 1

B. $-1$

C. 0

D. none of these

Solution:

$g(x)=f \circ f(x)=f(f(x))=|f(x)-3| \because f(x)=|x-3|$

$=|| x-3|-3|$

$\because|x-3|=\left\{\begin{array}{c}(x-3), x>3 \\ -(x-3), x<3\end{array}\right.$

Since we have given $x>10$ then $|x-3|=(x-3)$

$\therefore g(x)=|(x-3)-3|=|x-6|$

$\because|x-6|=\left\{\begin{array}{l}(x-6), x>6 \\ -(x-6), x<6\end{array}\right.$

Since we have given $x>10$ then $|x-6|=(x-6)$

$\therefore g(x)=(x-6)$

$g^{\prime}(x)=\frac{d}{d x}(x-6)=1=(A)$

Leave a comment