Choose the correct alternative in the following:
If $f(x)=\log _{x} 2(\log x)$, then $f^{\prime}(x)$ at $x=e$ is
A. 0
B. 1
C. $1 / \mathrm{e}$
D $1 / 2 \mathrm{e}$
$f(x)=\log _{x} 2(\log x)$
Changing the base, we get
$\Rightarrow \mathrm{f}(\mathrm{x})=\frac{\log (\log \mathrm{x})}{\log \mathrm{x}^{2}}$
$\because \log _{b} a=\frac{\log a}{\log b}$
$\Rightarrow \mathrm{f}(\mathrm{x})=\frac{\log (\log \mathrm{x})}{2 \cdot \log \mathrm{x}}$
So, $f^{\prime}(x)=\frac{1}{2}\left\{\frac{1}{\log x}\left[\frac{d}{d x}\{\log (\log x)\}\right]+\log (\log x)\left[\frac{d}{d x}\left\{\frac{1}{\log x}\right\}\right]\right\}$
$\Rightarrow f^{\prime}(x)=\frac{1}{2}\left\{\frac{1}{\log x}\left[\frac{1}{\log x} \cdot \frac{1}{x}\right]+\log (\log x)\left[-\left(\frac{1}{\log x}\right)^{2} \cdot \frac{1}{x}\right]\right\}$
Putting $x=e$, we get
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{e})=\frac{1}{2}\left\{\frac{1}{\log \mathrm{e}}\left[\frac{1}{\log \mathrm{e}} \cdot \frac{1}{\mathrm{e}}\right]+\log (\log \mathrm{e})\left[-\left(\frac{1}{\log \mathrm{e}}\right)^{2} \cdot \frac{1}{\mathrm{e}}\right]\right\}$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{e})=\frac{1}{2}\left\{\left[\frac{1}{(\log \mathrm{e})^{2}} \cdot \frac{1}{\mathrm{e}}\right]+\log (\log \mathrm{e})\left[-\left(\frac{1}{\log \mathrm{e}}\right)^{2} \cdot \frac{1}{\mathrm{e}}\right]\right\}$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{e})=\frac{1}{2}\left\{\left[\frac{1}{1^{2}} \cdot \frac{1}{\mathrm{e}}\right]+\log (1)\left[-\left(\frac{1}{1}\right)^{2} \cdot \frac{1}{\mathrm{e}}\right]\right\}(\because \log \mathrm{e}=1)$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{e})=\frac{1}{2}\left\{\left[\frac{1}{1^{2}} \cdot \frac{1}{e}\right]+0 \cdot\left[-\left(\frac{1}{1}\right)^{2} \cdot \frac{1}{e}\right]\right\}(\because \log 1=0$
$\therefore f^{\prime}(e)=\frac{1}{2 e}$