Question:
Choose the correct alternative in the following:
Differential coefficient of $\sec \left(\tan ^{-1} x\right)$ is
A. $\frac{\mathrm{x}}{1+\mathrm{x}^{2}}$
B. $x \sqrt{1+x^{2}}$
C. $\frac{1}{\sqrt{1+x^{2}}}$
D. $\frac{\mathrm{x}}{\sqrt{1+\mathrm{x}^{2}}}$
Solution:
Let $f(x)=\sec \left(\tan ^{-1} x\right)$
Let $\theta=\tan ^{-1} x$
$\frac{d \theta}{d x}=\frac{1}{1+x^{2}}$ .....(1)
Now $\theta=\tan ^{-1} x$
$=x=\tan \theta$
$=\sqrt{1+x^{2}}=\sec \theta \because \sec ^{2} \theta-\tan ^{2} \theta=1$
Putting values, we get
$=\sec \theta \cdot \tan \theta \cdot \frac{1}{1+\mathrm{x}^{2}}$
$=\sqrt{1+\mathrm{x}^{2}} \cdot \mathrm{x} \cdot \frac{1}{\left(1+\mathrm{x}^{2}\right)}$
$\therefore \mathrm{f}^{\prime}(\mathrm{x})=\frac{\mathrm{x}}{\sqrt{1+\mathrm{x}^{2}}}$