Choose the correct alternative in the following:

Question:

Choose the correct alternative in the following:

If $y=\sqrt{\sin x+y}$, then $\frac{d y}{d x}=$

A. $\frac{\sin x}{2 y-1}$

B. $\frac{\sin x}{1-2 y}$

C. $\frac{\cos x}{1-2 y}$

D. $\frac{\cos x}{2 y-1}$

Solution:

$y=\sqrt{\sin x+y}$

Squaring both sides

$\Rightarrow y^{2}=\sin x+y$

Differentiating w.r.t $x$ we get,

$\Rightarrow 2 y \cdot \frac{d y}{d x}=\cos x+\frac{d y}{d x}$

$\Rightarrow \frac{d y}{d x}(2 y-1)=\cos x$

$\Rightarrow \frac{d y}{d x}=\frac{\cos x}{2 y-1}=D$

Leave a comment