Question:
Choose the correct alternative in the following:
If $f(x)=\sqrt{x^{2}-10 x+25}$, then the derivative of $f(x)$ in the interval $[0,7]$ is
A. 1
B. $-1$
C. 0
D. none of these
Solution:
$f(x)=\sqrt{x^{2}-10 x+25}$
$\Rightarrow f(x)=\sqrt{x^{2}-(2)(5) x+5^{2}}$
$\Rightarrow f(x)=\sqrt{(x-5)^{2}}$
$\Rightarrow f(x)=|x-5|$
$\Rightarrow f(x)=\left\{\begin{array}{c}(x-5), x-5 \geq 0 \Leftrightarrow x \geq 5 \\ -(x-5), x-5<0 \Leftrightarrow x<5\end{array}\right.$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\left\{\begin{array}{c}1, \mathrm{x} \geq 5 \\ -1, \mathrm{x}<5\end{array}\right.$
Since there is no fixed value of $f^{\prime}(x)$ in the interval $[0,7]$, so the answer is $(D)$ none of these