Choose the correct alternative in the following:

Question:

Choose the correct alternative in the following:

If $y=\sqrt{\sin x+y}$, then $\frac{d y}{d x}$ equals.

A. $\frac{\cos x}{2 y-1}$

B. $\frac{\cos x}{1-2 y}$

c. $\frac{\sin x}{1-2 y}$

D. $\frac{\sin x}{2 y-1}$

Solution:

$y=\sqrt{\sin x+y}$

Squaring both sides, we get

$y^{2}=\sin x+y$

Differentiating w.r.t y we get

$2 y=\cos x \frac{d x}{d y}+1$

$\frac{\mathrm{dx}}{\mathrm{dy}}=\frac{2 \mathrm{y}-1}{\cos \mathrm{x}}$

$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\cos \mathrm{x}}{2 \mathrm{y}-1}$

Leave a comment