Choose the correct alternative in the following:
If $x=a \cos ^{3} \theta, y=a \sin ^{3} \theta$, then $\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}=$
A. $\tan ^{2} \theta$
B. $\sec ^{2} \theta$
C. $\sec \theta$
D. $|\sec \theta|$
We are given that
$\mathrm{x}=\mathrm{a} \cdot \cos ^{3} \theta, \mathrm{y}=\mathrm{a} \cdot \sin ^{3} \theta$
$\sqrt{1+\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{2}}=?$
Now, we know
$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\frac{\mathrm{dy}}{\mathrm{d} \theta}}{\frac{\mathrm{dx}}{\mathrm{d} \theta}}$
Now,
$\frac{\mathrm{dx}}{\mathrm{d} \theta}=\frac{\mathrm{d}}{\mathrm{d} \theta} \mathrm{a} \cdot \cos ^{3} \theta$
$=-3 a \cos ^{2} \theta \sin \theta$ (Using Chain Rule)
Again
$\frac{d y}{d \theta}=\frac{d}{d \theta} a \cdot \sin ^{3} \theta$
$=3 a \sin ^{2} \theta \cos \theta$ (Using Chain Rule)
Now, $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\frac{\mathrm{dy}}{\mathrm{d} \theta}}{\frac{\mathrm{dx}}{\mathrm{d} \theta}}=\frac{3 \mathrm{a} \sin ^{2} \theta \cos \theta}{-3 \mathrm{a} \cos ^{2} \theta \sin \theta}$
By Simplifying we get,
$\frac{d y}{d x}=-\tan \theta$
$\therefore \sqrt{1+\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{2}}=\sqrt{1+(-\tan \theta)^{2}}=\sqrt{1+\tan ^{2} \theta}=\sqrt{\sec ^{2} \theta}$
$\therefore \sqrt{1+\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{2}}=|\sec \theta|=$ (D)