Check whether the first polynomial is a factor of the second polynomial by applying the division algorithm :
Check whether the first polynomial is a factor of the second polynomial by applying the division algorithm :
(i) $g(t)=t^{2}-3, f(t)=2 t^{4}+3 t^{3}-2 t^{2}-9 t-12$
(ii) $g(x)=x^{3}-3 x+1, f(x)=x^{5}-4 x^{3}+x^{2}+3 x+1$
(iii) $g(x)=2 x^{2}-x+3, f(x)=6 x^{5}-x^{4}+4 x^{3}-5 x^{2}-x-15$
$(i)$. Given $g(t)=t^{2}-3$
$f(t)=2 t^{4}+3 t^{3}-2 t^{2}-9 t-12$
Here, degree $(f(t))=4$ and
Degree $(g(t))=2$
Therefore, quotient $q(t)$ is of degree $4-2=2$
Remainder $r(t)$ is of degree 1 or less
Let $q(t)=a t^{2}+b t+c$ and
$r(t)=p t+q$
Using division algorithm, we have
$f(t)=g(t)+q(t)+r(t)$
$2 t^{4}+3 t^{3}-2 t^{2}-9 t-12=\left(a t^{2}+b t+c\right)\left(t^{2}-3\right)+p t+q$
$2 t^{4}+3 t^{3}-2 t^{2}-9 t-12=a t^{4}+b t^{3}+c t^{2}-3 a t^{2}-3 b t-3 c+p t+q$
$2 t^{4}+3 t^{3}-2 t^{2}-9 t-12=a t^{4}+b t^{3}-t^{2}(3 a-c)-t(3 b-p)-3 c+q$
Equating co-efficient of various powers of $t$, we get
On equating the co-efficient of $t^{4}$
$2 t^{4}=a t^{4}$
$2=a$
On equating the co-efficient of $t^{3}$
$3 t^{3}=b t^{3}$
$3=b$
On equating the co-efficient of $t^{2}$
$2=3 a-c$
$3=b$
On equating the co-efficient of $t^{2}$
$2=3 a-c$
Substituting $a=2$, we get
$2=3 \times 2-c$
$2=6-c$
$2-6=-c$
$c=4$
On equating the co-efficient of $t$
$9=3 b-p$
Substituting $b=3$, we get
$9=9-p$
$9-9=-p$
$0=-p$
$p=0$
On equating constant term
$-12=-3 c+q$
Substituting $c=4$, we get
$-12=3 \times 4+q$
$-12=-12+q$
$-12+12=+q$
$0=q$
Quotient $q(t)=a t^{2}+b t+c$
$=2 t^{2}+3 t+4$
Remainder $r(t)=p t+q$
$=0 t+0$
$=0$
Clearly, $r(t)=0$
Hence, $g(t)$ is a factor of $f(t)$.
(ii) Given
$f(x)=x^{5}-4 x^{3}+x^{2}+3 x+1$
$g(x)=x^{3}-3 x+1$
Here, Degree $(f(x))=5$ and
Degree $(g(x))=3$
Therefore, quotient $q(x)$ is of degree $5-3=2$
Remainder $r(x)$ is of degree1
Let $q(x)=a x^{2}+b x+c$ and
$r(x)=p x+q$
Using division algorithm, we have
$f(x)=g(x) \times q(x)+r(x)$$x^{5}-4 x^{3}+x^{2}+3 x+1=\left(x^{3}-3 x+1\right)\left(a x^{2}+b x+c\right)+p x+q$
$x^{5}-4 x^{3}+x^{2}+3 x+1=\left(x^{3}-3 x+1\right)\left(a x^{2}+b x+c\right)+p x+q$
$x^{5}-4 x^{3}+x^{2}+3 x+1=a x^{5}-3 a x^{3}+a x^{2}+b x^{4}-3 b x^{2}+b x+c x^{3}-3 x c+c+p x+q$
$x^{5}-4 x^{3}+x^{2}+3 x+1=a x^{5}+b x^{4}-3 a x^{3}+c x^{3}+a x^{2}-3 b x^{2}+b x-3 x c+p x+c+q$
$x^{5}-4 x^{3}+x^{2}+3 x+1=a x^{5}+b x^{4}-x^{3}(3 a-c)+x^{2}(a-3 b)+x(b-3 c+p)+c+q$
Equating the co-efficient of various powers of $x$ on both sides, we get
On equating the co-efficient of $x^{5}$
$x^{5}=a x^{5}$
$1=a$
On equating the co-efficient of $x^{4}$
$b x^{4}=0$
$b=\frac{0}{x^{4}}$
$b=0$
On equating the co-efficient of $x^{3}$
$3 a-c=4$
Substituting $a=1$ we get
$3 \times 1-c=4$
$3-c=4$
$-c=4-3$
$-c=1$
$c=-1$
On equating the co-efficient of $x$
$b-3 c+p=3$
Substituting $b=0$ and $c=-1$, we get
$0-3 \times-1+p=3$
$3+p=3$
$+p=3-3$
$p=0$
On equating constant term, we get
$c+q=1$
Substituting $c=-1$, we get
$-1+q=1$
$q=1+1$
$q=2$
Therefore, quotient $q(x)=a x^{2}+b x+c$
$=1 x^{2}+0 x-1$
$=x^{2}-1$
Remainder $r(x)=p x+q$
$=0 \times x+2$
$=2$
Clearly, $r(x)=2$
Hence, $g(x)$ is not a factor of $f(x)$.
(iii) Given,
$f(x)=6 x^{5}-x^{4}+4 x^{3}-5 x^{2}-x-15$
$g(x)=2 x^{2}-x+3$
Here, Degree $(f(x))=5$ and
Degree $(g(x))=2$
Therefore, quotient $q(x)$ is of degree $5-2=3$ and
Remainder $r(x)$ is of degree less than 1
Let $q(x)=a x^{3}+b x^{2}+c x+d$ and
$r(x)=p x+q$
Using division algorithm, we have
$f(x)=g(x) \times q(x)+r(x)$
$6 x^{5}-x^{4}+4 x^{3}-5 x^{2}-x-15=\left(2 x^{2}-x+3\right)\left(a x^{3}+b x^{2}+c x+d\right)+p x+q$
$6 x^{5}-x^{4}+4 x^{3}-5 x^{2}-x-15=2 a x^{5}-a x^{4}+3 a x^{3}+2 b x^{4}-b x^{3}+3 b x^{2}+2 c x^{3}-c x^{2}$
$6 x^{5}-x^{4}+4 x^{3}-5 x^{2}-x-15=2 a x^{5}-a x^{4}+2 b x^{4}+3 a x^{3}-b x^{3}+2 c x^{3}+3 b x^{2}+2 x^{2} d$
$-c x^{2}+3 c x-d x+p x+3 d+q$
$6 x^{5}-x^{4}+4 x^{3}-5 x^{2}-x-15=2 a x^{5}-x^{4}(a-2 b)+x^{3}(3 a-b+2 c)-x^{2}(c-3 b-2 d)$
$-x(d-3 c-p)+3 d+q$
Equating the co-efficient of various powers of $x$ on both sides, we get On equating the co-efficient of $x^{5}$
$2 a x^{5}=6 x^{5}$
$a=\frac{6}{2}$
$a=3$
On equating the co-efficient of $x^{4}$
$a-2 b=1$
Substituting $a=3$, we get
$3-2 b=1$
$-2 b=1-3$
$-b=\frac{-2}{-2}$
$b=1$
On equating the co-efficient of $x^{3}$
$3 a-b+2 c=4$
Substituting $a=3$ and $b=1$, we get
$3 \times 3-1+2 c=4$
$9-1+2 c=4$
$8+2 c=4$
$2 c=4-8$
$2 c=-4$
$c=\frac{-4}{2}$
$c=-2$
On equating the co-efficient of $x^{2}$
$c-3 b-2 d=5$
Substituting $c=-2, b=1$, we get
$-2-3 \times 1-2 d=5$
$-2-3-2 d=5$
$-5-2 d=5$
$-2 d=5+5$
$-2 d=10$
$d=\frac{10}{-2}$
$d=-5$
On equating the co-efficient of $x$
$-3 c+d-p=1$
Substituting $c=-2$ and $d=-5$, we get
$-3 \times-2-5-p=1$
$6-5-p=1$
$1-p=1$
$-p=1-1$
$-p=0$
$0=p$
On equating constant term
$3 d+q=-15$
Substituting $d=-5$, we get
$3 \times-5+q=-15$
$-15+q=-15$
$q=-15+15$
$q=0$
Therefore, Quotient $q(x)=a x^{3}+b x^{2}+c x+d$
$=3 x^{3}+1 x^{2}-2 x-5$
Remainder $r(x)=p x+q$
$=0 x+0$
$=0$
Clearly, $r(x)=0$
Hence, $g(x)$ is a factor of $f(x)$.