Check whether 7 + 3x is a factor of 3 x 3 + 7x.

Solution:

Let us divide $\left(3 x^{3}+7 x\right)$ by $(7+3 x)$. If the remainder obtained is 0 , then $7+3 x$ will be a factor of $3 x^{3}+7 x$.

By long division,

>
<br/>
<br/>
As the remainder is not zero, therefore, $7+3 x$ is not a factor of $3 x^{3}+7 x$.</div>
        
        
          <div class=

Leave a comment