Question.
Certain force acting on a $20 \mathrm{~kg}$ mass changes its velocity from $5 \mathrm{~ms}^{-1}$ to $2 \mathrm{~ms}^{-1}$. Calculate the work done by the force.
Certain force acting on a $20 \mathrm{~kg}$ mass changes its velocity from $5 \mathrm{~ms}^{-1}$ to $2 \mathrm{~ms}^{-1}$. Calculate the work done by the force.
Solution:
Given, mass, $\mathrm{m}=20 \mathrm{~kg}$;
initial velocity, $\mathrm{u}=5 \mathrm{~ms}^{-1}$;
final velocity, $\mathrm{v}=2 \mathrm{~ms}^{-1}$
Work done by the force = change in kinetic energy
or $W=\frac{1}{2} m v^{2}-\frac{1}{2} m u^{2}=\frac{1}{2} m\left(v^{2}-u^{2}\right)$
or $\mathbf{W}=\frac{1}{3}(20)\left((2)^{2}-(5)^{2}\right]=-210 \mathbf{J}$.
Given, mass, $\mathrm{m}=20 \mathrm{~kg}$;
initial velocity, $\mathrm{u}=5 \mathrm{~ms}^{-1}$;
final velocity, $\mathrm{v}=2 \mathrm{~ms}^{-1}$
Work done by the force = change in kinetic energy
or $W=\frac{1}{2} m v^{2}-\frac{1}{2} m u^{2}=\frac{1}{2} m\left(v^{2}-u^{2}\right)$
or $\mathbf{W}=\frac{1}{3}(20)\left((2)^{2}-(5)^{2}\right]=-210 \mathbf{J}$.