Candidates of four schools appear in a mathematics test. The data were as follows:
If the average score of the candidates of all four schools is 66, Find the number of candidates that appeared from school III.
Given the average score of all schools = 66
$\Rightarrow \frac{\mathrm{N}_{1} \overline{\mathrm{x}}_{1}+\mathrm{N}_{2} \overline{\mathrm{x}}_{2}+\mathrm{N}_{3} \overline{\mathrm{x}}_{3}+\mathrm{N}_{4} \overline{\mathrm{x}}_{4}}{\mathrm{~N}_{1}+\mathrm{N}_{2}+\mathrm{N}_{3}+\mathrm{N}_{4}}=66$
$\Rightarrow \frac{60 \times 75+48 \times 80+x \times 55+40 \times 50}{60+48+x+40}=66$
$\Rightarrow \frac{4500+3840+55 x+2000}{148+x}=66$
$\Rightarrow \frac{10340+55 x}{148+x}=66$
⇒ 10340 + 55x = 66x + 9768
⇒ 10340 − 9768 = 66x − 55x
⇒ 11x = 572
⇒ x = 572/11 = 52
∴ No. of candidates appeared from school III = 52.