Calculate the standard cell potentials of galvanic cells in which the following reactions take place:
Calculate the standard cell potentials of galvanic cells in which the following reactions take place:
(i) 2Cr(s) + 3Cd2+(aq) → 2Cr3+(aq) + 3Cd
(ii) Fe2+(aq) + Ag+(aq) → Fe3+(aq) + Ag(s)
Calculate the ΔrGθ and equilibrium constant of the reactions.
The galvanic cell of the given reaction is depicted as:
$\mathrm{Cr}_{(s)}\left|\mathrm{Cr}^{3+}{ }_{(a q)}\right|\left|\mathrm{Cd}^{2+}{ }_{(a q)}\right| \mathrm{Cd}_{(s)}$
Now, the standard cell potential is
$E_{\text {cell }}^{\ominus}=E_{\mathrm{R}}^{\ominus}-E_{\mathrm{L}}^{\ominus}$
$=-0.40-(-0.74)$
$=+0.34 \mathrm{~V}$
$\Delta_{\mathrm{r}} G^{\ominus}=-n \mathrm{~F} E_{\text {cell }}^{\ominus}$
In the given equation,
n = 6
F = 96487 C mol−1
$E_{\text {cell }}^{\ominus}=+0.34 \mathrm{~V}$
Then, $\Delta_{\mathrm{r}} G^{\ominus}=-6 \times 96487 \mathrm{C} \mathrm{mol}^{-1} \times 0.34 \mathrm{~V}$
= −196833.48 CV mol−1
= −196833.48 J mol−1
= −196.83 kJ mol−1
Again,
$\Delta_{\mathrm{r}} G^{\ominus}=-\mathrm{R} T \ln K$
$\Rightarrow \Delta_{\mathrm{r}} G^{\ominus}=-2.303 \mathrm{R} T \ln K$
$\Rightarrow \log K=-\frac{\Delta_{\mathrm{r}} G}{2.303 \mathrm{R} T}$
$=\frac{-196.83 \times 10^{3}}{2.303 \times 8.314 \times 298}$
= 34.496
$\therefore \mathrm{K}=$ antilog $(34.496)$
= 3.13 × 1034
(ii) $E_{\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}}^{\ominus}=0.77 \mathrm{~V}$
$E_{\mathrm{Ag}^{+} / \mathrm{Ag}}=0.80 \mathrm{~V}$
The galvanic cell of the given reaction is depicted as:
$\mathrm{Fe}^{2+}{ }_{(a q)}\left|\mathrm{Fe}^{3+}(a q) \| \mathrm{Ag}^{+}{ }_{(a q)}\right| \mathrm{Ag}_{(s)}$
Now, the standard cell potential is
$E_{\text {cell }}^{\ominus}=E_{\mathrm{R}}^{\ominus}-E_{\mathrm{L}}^{\ominus}$
$=0.80-0.77$
$=0.03 \mathrm{~V}$
Here, n = 1.
Then, $\Delta_{\mathrm{r}} G^{\ominus}=-n \mathrm{~F} E_{\text {cell }}^{\ominus}$
= −1 × 96487 C mol−1 × 0.03 V
= −2894.61 J mol−1
= −2.89 kJ mol−1
Again, $\Delta_{\mathrm{r}} G^{\ominus}=-2.303 \mathrm{R} T \ln K$
$\Rightarrow \log K=-\frac{\Delta_{\mathrm{r}} G}{2.303 \mathrm{R} T}$
$=\frac{-2894.61}{2.303 \times 8.314 \times 298}$
= 0.5073
$\therefore \mathrm{K}=$ antilog $(0.5073)$
= 3.2 (approximately)