Calculate the mean deviation from the median of the following data:
Given the frequency distribution
Now we have to find the mean deviation from the median
Let us make a table of the given data and append other columns after calculations
Now, here N=20, which is even.
Now, here $\mathrm{N}=20$, which is even.
Here median class $=\frac{\mathrm{N}}{2}=10^{\text {th }}$ term
This observation lie in the class interval 12-18, so median can be written as,
$\mathrm{M}=\mathrm{l}+\frac{\frac{\mathrm{N}}{2}-\mathrm{cf}}{\mathrm{f}} \times \mathrm{h}$
Here $I=12, c f=9, f=3, h=6$ and $N=20$, substituting these values, the aboveĀ equation becomes,
$M=12+\frac{\frac{20}{2}-9}{3} \times 6$
$\Rightarrow M=12+\frac{10-9}{3} \times 6$
$\Rightarrow \mathrm{M}=12+\frac{1 \times 6}{3}$
$\Rightarrow M=12+2=14$
Hence Mean Deviation becomes,
$M . D=\frac{\sum f_{i} d_{i}}{\sum f_{i}}=\frac{140}{20}=7$
Therefore, the mean deviation about the median of the distribution is 7