Calculate the area of the designed region in fig. common between the two quadrants of circles of radius 8 cm each.
Side of the square = 8 cm
$\therefore$ Area of the square $(\mathrm{ABCD})=8 \times 8 \mathrm{~cm}^{2}$
$=64 \mathrm{~cm}^{2}$
Now, radius of the quadrant ADQB = 8 cm
$\therefore \quad$ Area of the quadrant $\mathrm{ADQB}$
$=\frac{90^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 8 \times 8 c m^{2}$
$=\frac{1}{4} \times \frac{22}{7} \times 64 \mathrm{~cm}^{2}=\frac{22 \times 16}{7} \mathrm{~cm}^{2}$
Similarly, area of the quadrant
$\mathrm{BPDC}=\frac{\mathbf{2 2} \times \mathbf{1 6}}{\mathbf{7}} \mathrm{cm}^{2}$
Sum of the two quadrant
$=2\left[\frac{22 \times 16}{7}\right] \mathrm{cm}^{2}=\frac{704}{7} \mathrm{~cm}^{2}$
Now, area of design =
[Sum of the area of two quadrant] –
[Area of the square ABCD]
$=\frac{704}{7} \mathrm{~cm}^{2}-64 \mathrm{~cm}^{2}=\frac{704-448}{7} \mathrm{~cm}^{2}$
$=\frac{\mathbf{2 5 6}}{\mathbf{7}} \mathrm{cm}^{2}$