By what numbers should each of the following be divided to get a perfect square in each case? Also, find the number whose square is the new number.
(i) 16562
(ii) 3698
(iii) 5103
(iv) 3174
(v) 1575
Factorising each number.
(i) 16562 = 2 x 7 x 7 x 13 x 13
Grouping them into pairs of equal factors:
16562 = 2 x (7 x 7) x (13 x 13)
The factor, 2 is not paired. For a number to be a perfect square, each prime factor has to be paired. Hence, 16562 must be divided by 2 for it to be a perfect square.
The new number would be (7 x 7) x (13 x 13).
Furthermore, we have:
(7 x 7) x (13 x 13) = (7 x 13) x (7 x 13)
Hence, the number whose square is the new number is:
7 x 13 = 91
(ii) 3698 = 2 x 43 x 43
Grouping them into pairs of equal factors:
3698 = 2 x (43 x 43)
The factor, 2 is not paired. For a number to be a perfect square, each prime factor has to be paired. Hence, 3698 must be divided by 2 for it to be a perfect square.
The new number would be (43 x 43).
Hence, the number whose square is the new number is 43.
(iii) 5103 = 3 x 3 x 3 x 3 x 3 x 3 x 7
Grouping them into pairs of equal factors:
5103 = (3 x 3) x (3 x 3) x (3 x 3) x 7
The factor, 7 is not paired. For a number to be a perfect square, each prime factor has to be paired. Hence, 5103 must be divided by 7 for it to be a perfect square.
The new number would be (3 x 3) x (3 x 3) x (3 x 3).
Furthermore, we have:
(3 x 3) x (3 x 3) x (3 x 3) = (3 x 3 x 3) x (3 x 3 x 3)
Hence, the number whose square is the new number is:
3 x 3 x 3 = 27
(iv) 3174 = 2 x 3 x 23 x 23
Grouping them into pairs of equal factors:
3174 = 2 x 3 x (23 x 23)
The factors, 2 and 3 are not paired. For a number to be a perfect square, each prime factor has to be paired. Hence, 3174 must be divided by 6 (2 x 3) for it to be a perfect square.
The new number would be (23 x 23).
Hence, the number whose square is the new number is 23.
(v) 1575 = 3 x 3 x 5 x 5 x 7
Grouping them into pairs of equal factors:
1575 = (3 x 3) x (5 x 5) x 7
The factor, 7 is not paired. For a number to be a perfect square, each prime factor has to be paired. Hence, 1575 must be divided by 7 for it to be a perfect square.
The new number would be (3 x 3) x (5 x 5).
Furthermore, we have:
(3 x 3) x (5 x 5) = (3 x 5) x (3 x 5)
Hence, the number whose square is the new number is:
3 x 5 = 15