BE and CF are two equal altitudes of a triangle ABC. Using RHS congruence rule, prove that the triangle ABC is isosceles.
Solution:
In $\triangle B E C$ and $\triangle C F B$,
$\angle B E C=\angle C F B\left(\right.$ Each $\left.90^{\circ}\right)$
$\mathrm{BC}=\mathrm{CB}$ (Common)
$\mathrm{BE}=\mathrm{CF}$ (Given)
$\therefore \Delta \mathrm{BE} \mathrm{C} \cong \triangle \mathrm{CFB}(\mathrm{By} \mathrm{RHS}$ congruency $)$
$\Rightarrow \angle B C E=\angle C B F($ By CPCT $)$
$\therefore A B=A C$ (Sides opposite to equal angles of a triangle are equal)
Hence, $\triangle \mathrm{ABC}$ is isosceles.
In $\triangle B E C$ and $\triangle C F B$,
$\angle B E C=\angle C F B\left(\right.$ Each $\left.90^{\circ}\right)$
$\mathrm{BC}=\mathrm{CB}$ (Common)
$\mathrm{BE}=\mathrm{CF}$ (Given)
$\therefore \Delta \mathrm{BE} \mathrm{C} \cong \triangle \mathrm{CFB}(\mathrm{By} \mathrm{RHS}$ congruency $)$
$\Rightarrow \angle B C E=\angle C B F($ By CPCT $)$
$\therefore A B=A C$ (Sides opposite to equal angles of a triangle are equal)
Hence, $\triangle \mathrm{ABC}$ is isosceles.