be a function defined as

Question:

Let $f: \mathrm{R} \rightarrow \mathrm{R}$ be a function defined as

$f(x)=\left\{\begin{array}{cl}\frac{\sin (a+1) x+\sin 2 x}{2 x} & , \text { if } x<0 \\ b & , \text { if } x=0 \\ \frac{\sqrt{x+b x^{3}}-\sqrt{x}}{b x^{5 / 2}} & , \text { if } x>0\end{array}\right.$

If $f$ is continuous at $x=0$, then the value of $\mathrm{a}+\mathrm{b}$ is equal to:

  1. (1) $-\frac{5}{2}$

  2. (2) $-2$

  3. (3) $-3$

  4. (4) $-\frac{3}{2}$


Correct Option: , 4

Solution:

$f(x)$ is continuous at $x=0$

$\lim _{x \rightarrow 0^{+}} f(x)=f(0)=\lim _{x \rightarrow 0^{-}} f(x) \ldots(1)$

$f(0)=b \ldots(2)$

$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}\left(\frac{\sin (a+1) x}{2 x}+\frac{\sin 2 x}{2 x}\right)$

$=\frac{a+1}{2}+1 \ldots(3)$

$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \frac{\sqrt{x+b x^{3}}-\sqrt{x}}{b x^{5 / 2}}$

$=\lim _{x \rightarrow 0^{+}} \frac{\left(x+b x^{3}-x\right)}{b x^{5 / 2}\left(\sqrt{x+b x^{3}}+\sqrt{x}\right)}$

$=\lim _{x \rightarrow 0^{+}} \frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{1+b x^{2}}+1\right)}=\frac{1}{2}$.....(4)

Use $(2),(3) \&(4)$ in $(1)$

$\frac{1}{2}=b=\frac{a+1}{2}+1$

$\Rightarrow b=\frac{1}{2}, a=-2$

$a+b=\frac{-3}{2}$

Leave a comment