At what rate percent will a sum of Rs 1000 amount to Rs 1102.50 in 2 years

Question:

At what rate percent will a sum of Rs 1000 amount to Rs 1102.50 in 2 years at compound interest?

Solution:

$\mathrm{A}=\mathrm{P}\left(1+\frac{\mathrm{R}}{100}\right)^{\mathrm{n}}$

$1102.50=1000\left(1+\frac{\mathrm{R}}{100}\right)^{2}$

$\frac{1102.50}{1000}=(1+0.01 \mathrm{R})^{2}$

$(1+0.01 \mathrm{R})^{2}=1.1025$

$(1+0.01 \mathrm{R})^{2}=(1.05)^{2}$

On comparing both the sides, we get:

$1+0.01 \mathrm{R}=1.05$

$0.01 \mathrm{R}=0.05$

$\mathrm{R}=5$

Thus, the required rate percent is 5 .

Leave a comment