At what point of the curve $y=x^{2}$ does the tangent make an angle of $45^{\circ}$ with the $x$-axis?
Given:
The curve is $y=x^{2}$
Differentiating the above w.r.t $\mathrm{x}$
$\Rightarrow y=x^{2}$
$\Rightarrow \frac{d y}{d x}=2 x^{2}-1$
$\Rightarrow \frac{d y}{d x}=2 x \ldots(1)$
$\therefore \frac{\mathrm{dy}}{\mathrm{dx}}=$ The Slope of the tangent $=\tan \theta$
Since, the tangent make an angle of $45^{\circ}$ with $x$ - axis
i.e,
$\Rightarrow \frac{d y}{d x}=\tan \left(45^{\circ}\right)=1 \ldots(2)$
$\therefore \tan \left(45^{\circ}\right)=1$
From (1) \& (2), we get,
$\Rightarrow 2 x=1$
$\Rightarrow x=\frac{1}{2}$
Substituting $x=\frac{1}{2}$ in $y=x^{2}$, we get,
$\Rightarrow y=\left(\frac{1}{2}\right)^{2}$
$\Rightarrow y=\frac{1}{4}$
Thus, the required point is $\left(\frac{1}{2}, \frac{1}{4}\right)$