Question:
At what point of the curve $y=x^{2}$ does the tangent make an angle of $45^{\circ}$ with the $x$-axis?
Solution:
Let the required point be (x1, y1).
The tangent makes an angle of 45o with the x-axis.
∴ Slope of the tangent = tan 45o = 1
Since, the point lies on the curve.
Hence, $y_{1}^{2}=x_{1}$
Now, $y^{2}=x$
$\Rightarrow 2 y \frac{d y}{d x}=1$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2 y}$
Slope of the tangent $=\left(\frac{d y}{d x}\right)_{\left(x_{1}, y_{1}\right)}=\frac{1}{2 y_{1}}$
Given:
$\frac{1}{2 y_{1}}=1$
$\Rightarrow 2 y_{1}=1$
$\Rightarrow y_{1}=\frac{1}{2}$
Now,
$x_{1}=y_{1}^{2}=\left(\frac{1}{2}\right)^{2}=\frac{1}{4}$
$\therefore\left(x_{1}, y_{1}\right)=\left(\frac{1}{4}, \frac{1}{2}\right)$