At the foot of a mountain, the elevation of it summit is 45°; after ascending 1000 m towards the mountain up a slope of 30° inclination, the elevation is found to be 60°. Find the height of the mountain.
Suppose, AB is a mountain of height t + x.
In $\triangle D F C$,
$\sin 30^{\circ}=\frac{x}{1000}$
$\Rightarrow x=1000 \times\left(\frac{1}{2}\right)=500 \mathrm{~m}$
and,
$\tan 30^{\circ}=\frac{x}{y}$
$\Rightarrow y=\frac{x}{\tan 30^{\circ}}=500 \sqrt{3}$
In $\Delta A B C$,
$\tan 45^{\circ}=\frac{t+x}{y+z}$
$\Rightarrow t+x=y+z \quad \ldots(1)$
In $\Delta A D E$
$\tan 60^{\circ}=\frac{t}{z}$
$\Rightarrow t=\sqrt{3} z \quad \ldots(2)$
From (1) and (2), we have
$\sqrt{3} z+x=y+z$
$\Rightarrow z(\sqrt{3}-1)=500(\sqrt{3}-1)$
$\Rightarrow z=500 \mathrm{~m}$
$\therefore t=\sqrt{3} z=500 \sqrt{3}$
Hence, height of the mountain $=t+x=500 \sqrt{3}+500=500(\sqrt{3}+1) \mathrm{m}$.