If $a\left(\frac{1}{b}+\frac{1}{c}\right), b\left(\frac{1}{c}+\frac{1}{a}\right), c\left(\frac{1}{a}+\frac{1}{b}\right)$ are in A.P., prove that $a, b, c$ are in A.P.
Given;
$a\left(\frac{1}{b}+\frac{1}{c}\right), b\left(\frac{1}{c}+\frac{1}{a}\right), c\left(\frac{1}{a}+\frac{1}{b}\right)$ are in A.P.
By adding 1 to each term, we get:
$a\left(\frac{1}{b}+\frac{1}{c}\right)+1, b\left(\frac{1}{c}+\frac{1}{a}\right)+1, c\left(\frac{1}{a}+\frac{1}{b}\right)+1$ are in A.P.
$\Rightarrow a\left(\frac{1}{b}+\frac{1}{c}+\frac{1}{a}\right), b\left(\frac{1}{c}+\frac{1}{a}+\frac{1}{b}\right), c\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)$ are in A.P.
Dividing all terms by $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$, we get:
$\Rightarrow a, b, c$ are in A.P.
Hence proved.