Apply division algorithm to find the quotient q(x) and remainder r(x) in dividing f(x) by g(x) in each of the following :
(i) $f(x)=x^{3}-6 x^{2}+11 x-6, g(x)=x^{2}+x+1$
(ii) $f(x)=10 x^{4}+17 x^{3}-62 x^{2}+30 x-3, g(x)=2 x^{2}+7 x+1$
(iii) $f(x)=4 x^{3}+8 x+8 x^{2}+7, g(x)=2 x^{2}-x+1$
(iv) $f(x)=15 x^{3}-20 x^{2}+13 x-12, g(x)=2-2 x+x^{2}$
(i) We have
$f(x)=x^{3}-6 x^{2}+11 x-6$
$g(x)=x^{2}+x+1$
Here, degree $[f(x)]=3$ and
Degree $(g(x))=2$
Therefore, quotient $q(x)$ is of degree $3-2=1$ and the remainder $r(x)$ is of degree less than 2
Let $q(x)=a x+b$ and
$r(x)=c x+d$
Using division algorithm, we have
$f(x)=g(x) \times q(x)+r(x)$
$x^{3}-6 x^{2}+11 x-6=\left(x^{2}+x+1\right)(a x+b)+c x+d$
$x^{3}-6 x^{2}+11 x-6=a x^{3}+a x^{2}+a x+b x^{2}+b x+b+c x+d$
$x^{3}-6 x^{2}+11 x-6=a x^{3}+a x^{2}+b x^{2}+a x+b x+c x+b+d$
$x^{3}-6 x^{2}+11 x-6=a x^{3}+(a+b) x^{2}+(a+b+c) x+b+d$
Equating the co-efficients of various powers of $x$ on both sides, we get
On equating the co-efficient of $x^{3}$
$x^{3}=a x^{3}$
$x^{x}=a x^{x}$
$1=a$
On equating the co-efficient of $x^{2}$
$-6 x^{2}=(a+b) x^{2}$
$-6=a+b$
Substituting $a=1$
$-6=1+b$
$-6-1=b$
$-7=b$
On equating the co-efficient of $x$
$11 x=(a+b+c) x$
$11=a+b+c$
Substituting $a=1$; and $b=-7$ we get,
$11=1+(-7)+c$
$11=-6+c$
$11+6=c$
$17=c$
On equating the constant terms
$-6=b+d$
Substituting $b=-7$ we get,
$-6=-7+d$
$-6+7=d$
$1=d$
Therefore,
Quotient $q(x)=a x+b$
$=(1 x-7)$
And remainder $r(x)=c x+d$
$=(17 x+1)$
Hence, the quotient and remainder is given by,
(ii) We have
$f(x)=10 x^{4}+17 x^{3}-62 x^{2}+30 x-3$
$g(x)=2 x^{2}+7 x+1$
Here, Degree $(f(x))=4$ and
Degree $(g(x))=2$
Therefore, quotient $q(x)$ is of degree $4-2=2$ and remainder $r(x)$ is of degree less than 2
$(=\operatorname{deg} \operatorname{ree}(g(x)))$
Let $g(x)=a x^{2}+b x+c$ and
$r(x)=p x+q$
Using division algorithm, we have
$f(x)=g(x) \times q(x)+r(x)$
$10 x^{4}+17 x^{3}-62 x^{2}+30 x-3=\left(2 x^{2}+7 x+1\right)\left(a x^{2}+b x+c\right)+p x+q$
$10 x^{4}+17 x^{3}-62 x^{2}+30 x-3=2 a x^{4}+7 a x^{3}+a x^{2}+2 b x^{3}+7 b x^{2}+b x+2 c x^{2}+7 x c+c+p x+q$
$10 x^{4}+17 x^{3}-62 x^{2}+30 x-3=2 a x^{4}+7 a x^{3}+2 b x^{3}+a x^{2}+7 b x^{2}+2 c x^{2}+b x+7 x c+p x+c+q$
$10 x^{4}+17 x^{3}-62 x^{2}+30 x-3=2 a x^{4}+x^{3}(7 a+2 b)+x^{2}(a+7 b+2 c)+x(b+7 c+p)+c+q$
Equating the co-efficients of various powers $x$ on both sides, we get
On equating the co-efficient of $x^{4}$
$2 a=10$
$a=\frac{10}{2}$
$a=5$
On equating the co-efficient of $x^{3}$
$7 a+2 b=17$
Substituting $a=5$ we get
$7 \times 5+2 b=17$
$35+2 b=17$
$2 b=17-35$
$2 b=-18$
$b=\frac{-18}{2}$
$b=-9$
On equating the co-efficient of $x^{2}$
$a+7 b+2 c=-62$
Substituting $a=5$ and $b=-9$, we get
$5+7 \times-9+2 c=-62$
$5-63+2 c=-62$
$2 c=-62+63-5$
$2 c=-4$
$c=\frac{-4}{2}$
$c=-2$
On equating the co-efficient of $x$
$b+7 c+p=30$
Substituting $b=-9$ and $c=-2$, we get
$-9+7 \times-2+p=30$
$-9-14+p=30$
$-23+p=30$
$p=30+23$
$p=53$
On equating constant term, we get
$c+q=-3$
Substituting $c=-2$, we get
$-2+q=-3$
$q=-3+2$
$q=-1$
Therefore, quotient $q(x)=a x^{2}+b x+c$
$=5 x^{2}-9 x-2$
Remainder $r(x)=p x+q$
$=53 x-1$
(iii) we have
$f(x)=4 x^{3}+8 x+8 x^{2}+7$
$g(x)=2 x^{2}-x+1$
Here, Degree $(f(x))=3$ and
Degree $(g(x))=2$
Therefore, quotient $q(x)$ is of degree $3-2=1$ and
Degree $(g(x))=2$
Therefore, quotient $q(x)$ is of degree $3-2=1$ and
Remainder $r(x)$ is of degree less than 2
Let $q(x)=a x+b$ and
$r(x)=c x+d$
Using division algorithm, we have
$f(x)=g(x) \times q(x)+r(x)$
$4 x^{3}+8 x^{2}+8 x+7=\left(2 x^{2}-x+1\right)(a x+b)+c x+d$
$4 x^{3}+8 x^{2}+8 x+7=2 a x^{3}-a x^{2}+a x+2 b x^{2}-x b+b+c x+d$
$4 x^{3}+8 x^{2}+8 x+7=2 a x^{3}-a x^{2}+2 b x^{2}+a x-x b+c x+b+d$
$4 x^{3}+8 x^{2}+8 x+7=2 a x^{3}+x^{2}(-a+2 b)+x(a-b+c)+b+d$
Equating the co-efficient of various Powers of $x$ on both sides. we get
On equating the co-efficient of $x^{3}$
$2 a=4$
$a=\frac{4}{2}$
$a=2$
On equating the co-efficient of $x^{2}$
$8=-a+2 b$
Substituting $a=2$ we get
$8=-2+2 b$
Substituting $a=2$ we get
$8=-2+2 b$
$8+2=2 b$
$10=2 b$
$\frac{10}{2}=b$
$5=b$
On equating the co-efficient of $x$
$a-b+c=8$
Substituting $a=2$ and $b=5$ we get
$2-5+c=8$
$-3+c=8$
$c=8+3$
$c=11$
On equating the constant term, we get
$b+d=7$
Substituting $b=5$, we get
$5+d=7$
$d=7-5$
$d=2$
Therefore, quotient $q(x)=a x+b$
$=2 x+5$
Remainder $r(x)=c x+d$
$=11 x+2$
(iv) Given,
$f(x)=15 x^{3}-20 x^{2}+13 x-12$
$g(x)=2-2 x+x^{2}$
Here, Degree $(f(x))=3$ and
Degree $(g(x))=2$
Therefore, quotient $q(x)$ is of degree $3-2=1$ and'
Remainder $r(x)$ is of degree less than 2
Let $q(x)=a x+b$ and
$r(x)=c x+d$
Using division algorithm, we have
$f(x)=g(x) \times q(x)+r(x)$
$15 x^{3}-20 x^{2}+13 x-12=\left(x^{2}-2 x+2\right)(a x+b)+c x+d$
$15 x^{3}-20 x^{2}+13 x-12=a x^{3}-2 a x^{2}+2 a x+b x^{2}-2 b x+2 b+c x+d$
$15 x^{3}-20 x^{2}+13 x-12=a x^{3}-2 a x^{2}+b x^{2}+2 a x-2 b x+c x+2 b+d$
$15 x^{3}-20 x^{2}+13 x-12=a x^{3}-x^{2}(2 a-b)+x(2 a-2 b+c)+2 b+d$
Equating the co-efficients of various powers of $x$ on both sides, we get
On equating the co-efficient of $x^{3}$
$a x^{3}=15 x^{3}$
$a=15$
On equating the co-efficient of $x^{2}$
$2 a-b=20$
Substituting $a=15$, we get
$2 \times 15-b=20$
$30-b=20$
$-b=20-30$
On equating the co-efficient of $x$
$2 a-2 b+c=13$
Substituting $a=15$ and $b=10$, we get
$2 \times 15-2 \times 10+c=13$
$30-20+c=13$
$10+c=13$
$c=13-10$
$c=3$
On equating constant term
$2 b+d=-12$
Substituting $b=10$, we get
$2 \times 10+d=-12$
$20+d=-12$
$d=-12-20$
$d=-32$
Therefore, quotient $q(x)=a x+b$
$=15 x+10$
Remainder $r(x)=3 x-32$
$=3 x-32$