Answer each of the following questions in one word or one sentence or as per exact requirement of the question.
Question:
Answer each of the following questions in one word or one sentence or as per exact requirement of the question.
In any triangle ABC, find the value of $a \sin (B-C)+b \sin (C-A)+c \sin (A-B)$
Solution:
Using sine rule, we have
$a \sin (B-C)+b \sin (C-A)+c \sin (A-B)$
$=k \sin A \sin (B-C)+k \sin B \sin (C-A)+k \sin C \sin (A-B)$
$=k \sin [\pi-(B+C)] \sin (B-C)+k \sin [\pi-(C+A)] \sin (C-A)+k \sin [\pi-(A+B)] \sin (A-B)$
$=k[\sin (B+C) \sin (B-C)+\sin (C+A) \sin (C-A)+\sin (A+B) \sin (A-B)]$
$=k\left(\sin ^{2} B-\sin ^{2} C+\sin ^{2} C-\sin ^{2} A+\sin ^{2} A-\sin ^{2} B\right)$
$=k \times 0$
$=0$
Hence, the required value is 0.