An α particle and a proton are accelerated

Question:

An $\alpha$ particle and a proton are accelerated from rest by a potential difference of $200 \mathrm{~V}$. After this, their de Broglie wavelengths are $\lambda_{\alpha}$ and

$\lambda_{\mathrm{p}}$ respectively. The ratio $\frac{\lambda_{p}}{\lambda_{\alpha}}$ is :

  1. $3.8$

  2. 8

  3. $7.8$

  4. $2.8$


Correct Option: , 4

Solution:

$\lambda=\frac{\mathrm{h}}{\mathrm{p}}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mqV}}}$

$\frac{\lambda_{p}}{\lambda_{\alpha}}=\sqrt{\frac{m_{a} q_{\alpha}}{m_{p} q_{p}}}=\sqrt{\frac{4 m_{p} \times 2 \mathrm{e}}{m_{p} \times e}}=\sqrt{8}=2 \sqrt{2}$

$=2 \sqrt{2}$

$\frac{\lambda_{p}}{\lambda_{\alpha}}=2 \times 1.4=2.8$

Leave a comment