An open tank is to be constructed with a square base and vertical sides so as to contain a given quantity of water. Show that the expenses of lining with lead with be least, if depth is made half of width.
Let $l, h, V$ and $S$ be the length, height, volume and surface area of the tank to be constructed.
Since volume, $V$ is constant,
$l^{2} h=V$
$\Rightarrow h=\frac{V}{l^{2}}$ .....(1)
Surface area, $S=l^{2}+4 l h$
$\Rightarrow S=l^{2}+\frac{4 V}{l}$ $\left[\begin{array}{ll}\text { From eq. } & (1)\end{array}\right]$
$\Rightarrow \frac{d S}{d l}=2 l-\frac{4 V}{l^{2}}$
For $S$ to be maximum or minimum, we must have
$\frac{d S}{\eta}=0$
$\Rightarrow 2 l-\frac{4 V}{l^{2}}=0$
$\Rightarrow 2 l^{3}-4 V=0$
$\Rightarrow 2 l^{3}=4 V$
$\Rightarrow l^{3}=2 V$
Now,
$\frac{d^{2} S}{d l^{2}}=2+\frac{8 V}{l^{3}}$
$\Rightarrow \frac{d^{2} S}{d l^{2}}=2+\frac{8 V}{2 V}=6>0$
Here, surface area is minimum.
$h=\frac{V}{l^{2}}$
Substituting the value of $V=\frac{l^{3}}{2}$ in eq. $(1)$, we get
$h=\frac{l^{3}}{2 l^{2}}$
$\Rightarrow h=\frac{l}{2}$
Hence proved.