An object of mass m_1 collides with another object

Question:

An object of mass $m_{1}$ collides with another object of mass $\mathrm{m}_{2}$, which is at rest. After the collision the objects move with equal speeds in opposite direction. The ratio of the masses $\mathrm{m}_{2}: \mathrm{m}_{1}$ is:

  1. $3: 1$

  2. $2: 1$

  3. $1: 2$

  4. $1: 1$


Correct Option: 1

Solution:

$m_{1} v_{1}=-m_{1} v+m_{2} v$

$v_{1}=-v+\frac{m_{2}}{m_{1}} v$

$\mathrm{v}_{1}=-\mathrm{v}+\frac{\mathrm{m}_{2}}{\mathrm{~m}_{1}} \mathrm{v}$

$\frac{\left(v_{1}+v\right)}{v}=\frac{m_{2}}{m_{1}}$

$\mathrm{e}=\frac{2 \mathrm{v}}{\mathrm{v}_{1}}=1$

$\mathrm{V}=\frac{\mathrm{v}_{1}}{2}$

$\frac{v_{1}+v_{1} / 2}{v_{1} / 2}=\frac{m_{2}}{m_{1}}$

$3=\frac{m_{2}}{m_{1}}$

 

Leave a comment