An object of mass 0.5 kg is executing simple harmonic motion.

Question:

An object of mass 0.5 kg is executing simple harmonic motion. It amplitude is 5 cm and time period (T) is 0.2 s. What will be the potential 

energy of the object at an instant $t=\frac{T}{4} s$ starting from mean position. Assume that the initial phase of the oscillation is zero.

  1. 0.62 J

  2. $6.2 \times 10^{-3} \mathrm{~J}$

  3. $1.2 \times 10^{3} \mathrm{~J}$

  4. $6.2 \times 10^{3} \mathrm{~J}$


Correct Option: 1

Solution:

$\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{m}}{\mathrm{k}}}$

$0.2=2 \pi \sqrt{\frac{0.5}{k}}$

$\mathrm{k}=50 \pi^{2}$

$\approx 500$

$x=A \sin (\omega t+\phi)$

$=5 \mathrm{~cm} \sin \left(\frac{\omega \mathrm{T}}{4}+0\right)$

$=5 \mathrm{~cm} \sin \left(\frac{\pi}{2}\right)$

$=5 \mathrm{~cm}$

$\mathrm{PE}=\frac{1}{2} \mathrm{kx}^{2}$

$=\frac{1}{2}(500)\left(\frac{5}{100}\right)^{2}$

$=0.6255$

Leave a comment