An object is located

Question:

An object is located at $2 \mathrm{~km}$ beneath the surface of the water. If the fractional compression $\frac{\Delta \mathrm{V}}{\mathrm{V}}$ is $1.36 \%$, the ratio of hydraulic stress to the corresponding hydraulic strain will be

[Given : density of water is $1000 \mathrm{~kg} \mathrm{~m}^{-3}$ and $\mathrm{g}=9.8 \mathrm{~ms}^{-2}$.]

  1. $1.96 \times 10^{7} \mathrm{Nm}^{-2}$

  2. $1.44 \times 10^{7} \mathrm{Nm}^{-2}$

  3. $2.26 \times 10^{9} \mathrm{Nm}^{-2}$

  4. $1.44 \times 10^{9} \mathrm{Nm}^{-2}$


Correct Option: , 4

Solution:

(4) $P=h \rho g$

$\beta=\frac{\mathrm{p}}{\frac{\Delta \mathrm{V}}{\mathrm{V}}}=\frac{2 \times 10^{3} \times 10^{3} \times 9.8}{1.36 \times 10^{-2}}$

$=1.44 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$

Leave a comment