Question.
An object 5 cm in length is held 25 cm away from a converging lens of focal length 10 cm. Draw the ray diagram and find the position, size and the nature of the image formed.
An object 5 cm in length is held 25 cm away from a converging lens of focal length 10 cm. Draw the ray diagram and find the position, size and the nature of the image formed.
solution:
Given, $\mathrm{h}_{1}=+5 \mathrm{~cm} ; \mathrm{u}=-25 \mathrm{~cm}$
$\mathrm{f}=+10 \mathrm{~cm}$
By lens equation,
$\frac{1}{v}-\frac{1}{u}=\frac{1}{f}$
or $\frac{1}{v}-\frac{1}{(-25)}=\frac{1}{+10}$
or $\frac{1}{v}+\frac{1}{25}=\frac{1}{+10}$
or $\frac{1}{v}=\frac{1}{10}-\frac{1}{25}=\frac{5-2}{50}=\frac{3}{50}$
or $\mathrm{v}=+50 / 3=+16.67 \mathrm{~cm}$
Magnification, $\mathrm{m}=+\frac{\mathrm{v}}{\mathrm{u}}=\frac{+(50 / 3)}{(-25)}=-\frac{2}{3}$
Now, $m=\frac{h_{2}}{h_{1}}$
or $\quad-\frac{2}{3}=\frac{h_{2}}{h_{1}}$
or $h_{2}=-\frac{2}{3} h_{1}=-\frac{2}{3} \times 5=-\frac{10}{3}$
or $\mathrm{h}_{2}=-3.33 \mathrm{~cm}$
The image is real, inverted and diminished.
Given, $\mathrm{h}_{1}=+5 \mathrm{~cm} ; \mathrm{u}=-25 \mathrm{~cm}$
$\mathrm{f}=+10 \mathrm{~cm}$
By lens equation,
$\frac{1}{v}-\frac{1}{u}=\frac{1}{f}$
or $\frac{1}{v}-\frac{1}{(-25)}=\frac{1}{+10}$
or $\frac{1}{v}+\frac{1}{25}=\frac{1}{+10}$
or $\frac{1}{v}=\frac{1}{10}-\frac{1}{25}=\frac{5-2}{50}=\frac{3}{50}$
or $\mathrm{v}=+50 / 3=+16.67 \mathrm{~cm}$
Magnification, $\mathrm{m}=+\frac{\mathrm{v}}{\mathrm{u}}=\frac{+(50 / 3)}{(-25)}=-\frac{2}{3}$
Now, $m=\frac{h_{2}}{h_{1}}$
or $\quad-\frac{2}{3}=\frac{h_{2}}{h_{1}}$
or $h_{2}=-\frac{2}{3} h_{1}=-\frac{2}{3} \times 5=-\frac{10}{3}$
or $\mathrm{h}_{2}=-3.33 \mathrm{~cm}$
The image is real, inverted and diminished.