An object 2.4 m in front of a lens forms a sharp image on a film 12 cm behind the lens.

Question:

A beaker contains water up to a height $\mathrm{h}_{1}$ and kerosene of height $\mathrm{h}_{2}$ above watger so that the total height of (water + kerosene) is $\left(h_{1}+h_{2}\right)$. Refractive index of water is $\mu_{1}$ and that of kerosene is $\mu_{2}$. The apparent shift in the position of the bottom of the beaker when viewed from above is :-

  1. $\left(1-\frac{1}{\mu_{1}}\right) \mathrm{h}_{2}+\left(1-\frac{1}{\mu_{2}}\right) \mathrm{h}_{1}$

  2. $\left(1+\frac{1}{\mu_{1}}\right) \mathrm{h}_{1}-\left(1+\frac{1}{\mu_{2}}\right) \mathrm{h}_{2}$

  3. $\left(1-\frac{1}{\mu_{1}}\right) \mathrm{h}_{1}+\left(1-\frac{1}{\mu_{2}}\right) \mathrm{h}_{2}$

  4. $\left(1+\frac{1}{\mu_{1}}\right) \mathrm{h}_{2}-\left(1+\frac{1}{\mu_{2}}\right) \mathrm{h}_{1}$


Correct Option: , 3

Solution:

Leave a comment