An ideal gas undergoes a quasi static, reversible process in which its molar heat capacity C remains constant.

Question:

An ideal gas undergoes a quasi static, reversible process in which its molar heat capacity C remains constant. If during this process the relation of pressure $\mathrm{P}$ and volume $\mathrm{V}$ is given by $\mathrm{PV}=$ constant, then $\mathrm{n}$ is given by (Here $\mathrm{C}_{\mathrm{P}}$ and $\mathrm{C}_{\mathrm{V}}$ are molar specific heat at constant pressure and constant volume, respectively) :-

 

  1. $\mathrm{n}=\frac{\mathrm{C}-\mathrm{C}_{\mathrm{V}}}{\mathrm{C}-\mathrm{C}_{\mathrm{P}}}$

  2. $\mathrm{n}=\frac{\mathrm{C}_{\mathrm{P}}}{\mathrm{C}_{\mathrm{V}}}$

  3. $\mathrm{n}=\frac{\mathrm{C}-\mathrm{C}_{\mathrm{P}}}{\mathrm{C}-\mathrm{C}_{\mathrm{V}}}$

  4. $\mathrm{n}=\frac{\mathrm{C}_{\mathrm{p}}-\mathrm{C}}{\mathrm{C}-\mathrm{C}_{\mathrm{v}}}$


Correct Option: , 3

Solution:

Leave a comment