An equilateral triangle of side 9 cm is inscribed in a circle. Find the radius of the circle.
Let ΔABC be an equilateral triangle of side 9 cm.
Let AD be one of its median.
Then, AD ⊥ BC (ΔABC is an equilateral triangle)
Also, $B D=\left(\frac{B C}{2}\right)=\left(\frac{9}{2}\right)=4.5 \mathrm{~cm}$
In right angled ΔADB, we have:
$A B^{2}=A D^{2}+B D^{2}$
$\Rightarrow A D^{2}=A B^{2}-B D^{2}$
$\Rightarrow A D=\sqrt{A B^{2}-B D^{2}}$
$=\sqrt{(9)^{2}-\left(\frac{9}{2}\right)^{2}} \mathrm{~cm}$
$=\frac{9 \sqrt{3}}{2} \mathrm{~cm}$
In the equilateral triangle, the centroid and circumcentre coincide and AG : GD = 2 : 1.
Now, radius $=A G=\frac{2}{3} A D$
$\Rightarrow A G=\left(\frac{2}{3} \times \frac{9 \sqrt{3}}{2}\right)=3 \sqrt{3} \mathrm{~cm}$
$\therefore$ The radius of the circle is $3 \sqrt{3} \mathrm{~cm}$.