An element with molar mass 2.7 × 10-2 kg mol-1 forms a cubic unit cell with edge length 405 pm. If its density is 2.7 × 103 kg m−3, what is the nature of the cubic unit cell?
It is given that density of the element, d = 2.7 × 103 kg m−3
Molar mass, M = 2.7 × 10−2 kg mol−1
Edge length, a = 405 pm = 405 × 10−12 m
= 4.05 × 10−10 m
It is known that, Avogadro’s number, NA = 6.022 × 1023 mol−1
Applying the relation,
$d=\frac{z, M}{a^{3} \cdot \mathrm{N}_{\mathrm{A}}}$
$z=\frac{d \cdot a^{3} \mathrm{~N}_{\mathrm{A}}}{M}$
$=\frac{2.7 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3} \times\left(4.05 \times 10^{-10} \mathrm{~m}\right)^{3} \times 6.022 \times 10^{23} \mathrm{~mol}^{-1}}{2.7 \times 10^{-2} \mathrm{~kg} \mathrm{~mol}^{-1}}$
$=4.004$
$=4$
This implies that four atoms of the element are present per unit cell. Hence, the unit cell is face-centred cubic (fcc) or cubic close-packed (ccp).