An electron (of mass $m$ ) and a photon have the same energy $E$ in the range of a few $\mathrm{eV}$. The ratio of the deBroglie wavelength associated with the electron and the wavelength of the photon is $(c=$ speed of light in vacuum $)$
Correct Option: , 3
(3) De-Broglie wavelength of electron $\left(\lambda_{e}\right)$ is given by
$\lambda_{e}=\frac{h}{p_{e}}=\frac{h}{\sqrt{2 m E}}$ $\ldots$ (i) $\quad(\because p=\sqrt{2 m E})$
Energy of photon $(E)$ is given by
$E=\frac{h c}{\lambda_{P}}$ (Here $\lambda p=$ wavelength of Photon)
$\Rightarrow \lambda_{P}=\frac{h c}{E}$ ...(ii)
On dividing (i) by (ii) we get
$\Rightarrow \quad \frac{\lambda_{e}}{\lambda_{P}}=\frac{h}{\sqrt{2 m E}} \frac{E}{h c}=\sqrt{\frac{E}{2 m}} \cdot \frac{1}{c}$