An average person needs about $10000 \mathrm{~kJ}$ energy per day. The amount of glucose (molar mass $=180.0 \mathrm{~g} \mathrm{~mol}^{-1}$ ) needed to meet this energy requirement is _________g.
(Use : $\Delta_{\mathrm{C}} \mathrm{H}$ (glucose) $=-2700 \mathrm{~kJ} \mathrm{~mol}^{-1}$ )
1 mole glucose give 2700 kJ energy
so mole of glucose needed for $10^{5} \mathrm{~kJ}$ energy
$=\frac{10000}{2700}=370 \mathrm{moles}$
wt. of glucose $=3.10 \times 180$
$=666.666$
$\approx 667 \mathrm{gm}$
$\frac{Y_{\text {Benzene }}}{Y_{\mathrm{M} . \mathrm{B}}}=\frac{\mathrm{P}_{\mathrm{B}}^{0} \mathrm{X}_{\mathrm{B}}}{\mathrm{P}_{\mathrm{MB}}^{0} \mathrm{X}_{\mathrm{MB}}}=\frac{70 \times 1}{20 \times 1}=\frac{7}{2}$
$Y_{\text {Benzene }}=\frac{7}{9}=77.77 \times 10^{-2}$
$=78 \times 10^{-12}$