An aeroplane is flying at a height of 300 m above the ground. Flying at this height the angles of depression from the aeroplane of two points on both banks of a river in opposite directions are 45° ad 60° respectively. Find the width of the river. $[$ Use $\sqrt{3}=1.732]$
Let CD be the height of the aeroplane above the river at some instant. Suppose A and B be two points on both banks of the river in opposite directions.
Height of the aeroplane above the river, CD = 300 m
Now,
In right ∆ACD,
$\tan 60^{\circ}=\frac{\mathrm{CD}}{\mathrm{AC}}$
$\Rightarrow \sqrt{3}=\frac{300}{\mathrm{AC}}$
$\Rightarrow \mathrm{AC}=\frac{300}{\sqrt{3}}=100 \sqrt{3} \mathrm{~m}$
In right ∆BCD,
$\tan 45^{\circ}=\frac{\mathrm{CD}}{\mathrm{BC}}$
$\Rightarrow 1=\frac{300}{\mathrm{BC}}$
$\Rightarrow \mathrm{BC}=300 \mathrm{~m}$
∴ Width of the river, AB
$=B C+A C$
$=300+100 \sqrt{3}$
$=300+100 \times 1.73$
$=300+173$
$=473 \mathrm{~m}$
Thus, the width of the river is 473 m.