Question:
An AC current is given by $I=I_{1} \sin \omega t+I_{2} \cos \omega t$. A hot wire ammeter will give a reading :
Correct Option: , 2
Solution:
$I=I_{1} \sin \omega t+I_{2} \cos \omega t$
$\therefore \mathrm{I}_{0}=\sqrt{\mathrm{I}_{1}^{2}+\mathrm{I}_{2}^{2}}$
$\therefore \mathrm{I}_{\mathrm{rms}}=\frac{\mathrm{I}_{0}}{\sqrt{2}}=\sqrt{\frac{\mathrm{I}_{1}^{2}+\mathrm{I}_{2}^{2}}{2}}$