Question:
All $x$ satisfying the inequality $\left(\cot ^{-1} x\right)^{2}-7\left(\cot ^{-1} x\right)+10>0$, lie in the interval:
Correct Option: , 2
Solution:
$\left(\cot ^{-1} x\right)^{2}-7\left(\cot ^{-1} x\right)+10>0$
$\left(\cot ^{-1} x-5\right)\left(\cot ^{-1}-2\right)>0$
$\cot ^{-1} x \in(-\infty, 2) \cup(5, \infty)$ ...(1)
But $\cot ^{-1} x$ lies in $(0, \pi)$
Now, from equation (1)
$\cot ^{-1} x \in(0,2)$
Now, it is clear from the graph
$x \in(\cot 2, \infty)$