AD is an altitude of an isosceles ΔABC in which AB = AC.

Question:

AD is an altitude of an isosceles ΔABC in which AB AC.
Show that (i) AD bisects BC, (ii) AD bisects ∠A.

 

Solution:

Given: AD is an altitude of an isosceles ΔABC in which AB AC.

To prove: (i) AD bisects BC, (ii) AD bisects ∠A

Proof:
(i) In ΔABD and ΔACD,

">ADB = ">ADC = 90°">°°          (Given, AD">BC)
AB = AC                                   (Given)
AD = AD                                  (Common side)

"> By RHS congruence criteria,
ΔABD ≅ ΔACD

"> BD = CD       (CPCT)

Hence, AD bisects BC.

(ii)
"> ΔABD ≅ ΔACD       [From (i)]
"> ">BAD = ">CAD      (CPCT)
Hence, AD bisects ∠A.

 

Leave a comment