Question:
ABCD is a trapezium in which AB || DC. P and Q are points on sides AD and BC such that PQ || AB. If PD = 18, BQ = 35 and QC = 15, find AD.
Solution:
In trapezium ABCD, AB || DC. P and Q are points on sides AD and BC such that PQ || AB.
Join AC. Suppose AC intersects PQ in O.
In $\Delta A C D, O P \| C D$
$\therefore \frac{A P}{P D}=\frac{A O}{O C} \quad \ldots \ldots(1) \quad(\mathrm{BPT})$
In $\Delta A B C, O Q \| A B$
$\therefore \frac{B Q}{Q C}=\frac{A O}{O C} \quad \ldots . .(2) \quad(\mathrm{BPT})$
From (1) and (2), we get
$\frac{A P}{D P}=\frac{B Q}{Q C}$
$\frac{A P}{18}=\frac{35}{15}$
$A P=\frac{35 \times 18}{15}$
$A P=\frac{7 \times 5 \times 3 \times 6}{5 \times 3}$
$A P=42$
$A D=A P+P D$
$A D=42+18$
$A D=60$
Hence, the value of $A D$ is 60 .