Question:
ABCD is a rhombus and its diagonals intersect at O.
(i) Is ∆BOC ≅ ∆DOC? State the congruence condition used?
(ii) Also state, if ∠BCO = ∠DCO.
Solution:
(i) Yes
In $\Delta \mathrm{BCO}$ and $\Delta \mathrm{DCO}:$
$\mathrm{OC}=\mathrm{OC}$ (common)
$\mathrm{BC}=\mathrm{DC}$ (all sides of a rhombus are equal)
$\mathrm{BO}=\mathrm{OD}$ (diagonal $s$ of a rhomus bisect each other)
$\mathrm{By} \mathrm{SSS}$ congruence :
$\Delta \mathrm{BCO} \cong \Delta \mathrm{DCO}$
(ii) Yes
By c.p.c.t:
$\angle B C O=\angle D C O$