ABCD is a rectangle formed by joining the points A (−1, −1), B(−1 4) C (5 4) and D (5, −1). P, Q, R and S are the mid-points of sides AB, BC, CD and DA respectively. Is the quadrilateral PQRS a square? a rectangle? or a rhombus? Justify your answer.
We have a rectangle ABCD formed by joining the points A (−1,−1); B (−1, 4); C (5, 4) and D (5,−1). The mid-points of the sides AB, BC, CD and DA are P, Q, R, S respectively.
We have to find that whether PQRS is a square, rectangle or rhombus.
In general to find the mid-point $\mathrm{P}(x, y)$ of two points $\mathrm{A}\left(x_{1}, y_{1}\right)$ and $\mathrm{B}\left(x_{2}, y_{2}\right)$ we use section formula as,
$\mathrm{P}(x, y)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
Therefore mid-point P of side AB can be written as,
$P(x, y)=\left(\frac{-1-1}{2}, \frac{4-1}{2}\right)$
Now equate the individual terms to get,
$x=-1$
$y=\frac{3}{2}$
So co-ordinates of $P$ is $\left(-1, \frac{3}{2}\right)$
Similarly mid-point Q of side BC can be written as,
$Q(x, y)=\left(\frac{5-1}{2}, \frac{4+4}{2}\right)$
Now equate the individual terms to get,
$x=2$
$y=4$
So co-ordinates of Q is (2, 4)
Similarly mid-point R of side CD can be written as,
$R(x, y)=\left(\frac{5+5}{2}, \frac{4-1}{2}\right)$
Now equate the individual terms to get,
$x=5$
$y=\frac{3}{2}$
So co-ordinates of $R$ is $\left(5, \frac{3}{2}\right)$
Similarly mid-point S of side DA can be written as,
$\mathrm{S}(x, y)=\left(\frac{5-1}{2}, \frac{-1-1}{2}\right)$
Now equate the individual terms to get,
$x=2$
$y=-1$
So co-ordinates of S is (2,−1)
So we should find the lengths of sides of quadrilateral PQRS.
$\mathrm{PQ}=\sqrt{(2+1)^{2}+\left(4-\frac{3}{2}\right)^{2}}$
$=\sqrt{9+\frac{25}{4}}$
$=\frac{\sqrt{61}}{2}$
$\mathrm{QR}=\sqrt{(2-5)^{2}+\left(4-\frac{3}{2}\right)^{2}}$
$=\sqrt{9+\frac{25}{4}}$
$=\frac{\sqrt{61}}{2}$
$\mathrm{RS}=\sqrt{(5-2)^{2}+\left(\frac{3}{2}+1\right)^{2}}$
$=\sqrt{9+\frac{25}{4}}$
$=\frac{\sqrt{61}}{2}$
$\mathrm{SP}=\sqrt{(2+1)^{2}+\left(-1-\frac{3}{2}\right)^{2}}$
$=\sqrt{9+\frac{25}{4}}$
$=\frac{\sqrt{61}}{2}$
All the sides of quadrilateral are equal.
So now we will check the lengths of the diagonals.
$\mathrm{PR}=\sqrt{(5+1)^{2}+\left(\frac{3}{2}-\frac{3}{2}\right)^{2}}$
$=6$
$\mathrm{QS}=\sqrt{(2-2)^{2}+(4+1)^{2}}$
$=5$
All the sides are equal but the diagonals are unequal. Hence ABCD is a rhombus.