ABCD is a cyclic quadrilateral such that AB is a diameter of the circle circumscribing it and ∠ADC = 140°, then ∠BAC is equal to
(a) 80°
(b) 50°
(c) 40°
(d) 30°
(b) Given, ABCD is a cyclic quadrilateral and ∠ADC = 140°.
We know that, sum of the opposite angles in a cyclic quadrilateral is 180°.
We know that, sum of the opposite angles in a cyclic quadrilateral is $180^{\circ}$.
$\angle A D C+\angle A B C=180^{\circ}$
$\Rightarrow \quad 140^{\circ}+\angle A B C=180^{\circ}$
$\Rightarrow \quad \angle A B C=180^{\circ}-140^{\circ}$
$\therefore \quad \angle A B C=40^{\circ}$
Since, $\angle A C B$ is an angle in a semi-circle.
$\therefore \quad \angle A C B=90^{\circ}$
In $\triangle A B C, \quad \angle B A C+\angle A C B+\angle A B C=180^{\circ}$
[by angle sum property of a triangle]
$\Rightarrow \quad \angle B A C+90^{\circ}+40^{\circ}=180^{\circ}$
$\Rightarrow \quad \angle B A C=180^{\circ}-130^{\circ}=50^{\circ}$