Question.
$\mathrm{ABC}$ is an isosceles triangle right angled at $\mathrm{C}$. Prove that $\mathrm{AB}^{2}=2 \mathrm{AC}^{2} .$
$\mathrm{ABC}$ is an isosceles triangle right angled at $\mathrm{C}$. Prove that $\mathrm{AB}^{2}=2 \mathrm{AC}^{2} .$
Solution:
In $\triangle \mathrm{ABC}, \angle \mathrm{ACB}=90^{\circ}$. We are given that
$\triangle \mathrm{ABC}$ is an isosceles triangle.
$\Rightarrow \angle \mathrm{A}=\angle \mathrm{B}=45^{\circ}$
$\Rightarrow \mathrm{AC}=\mathrm{BC}$ ... (1)
By pythagoras theorem, we have
$\mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{BC}^{2}$
$=\mathrm{AC}^{2}+\mathrm{AC}^{2} \quad\{\because \mathrm{BC}=\mathrm{AC}$ by $(1)]$
$=2 \mathrm{AC}^{2}$
In $\triangle \mathrm{ABC}, \angle \mathrm{ACB}=90^{\circ}$. We are given that
$\triangle \mathrm{ABC}$ is an isosceles triangle.
$\Rightarrow \angle \mathrm{A}=\angle \mathrm{B}=45^{\circ}$
$\Rightarrow \mathrm{AC}=\mathrm{BC}$ ... (1)
By pythagoras theorem, we have
$\mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{BC}^{2}$
$=\mathrm{AC}^{2}+\mathrm{AC}^{2} \quad\{\because \mathrm{BC}=\mathrm{AC}$ by $(1)]$
$=2 \mathrm{AC}^{2}$